

Graphene for laser applications

E.D. Obraztsova¹, M.G. Rybin¹, A.V. Tausenev², V.A. Shotniev², V.R. Sorochenko¹, P.S. Rusakov¹, I.I. Kondrashov¹

¹A.M. Prokhorov General Physics Institute, RAS, 38 Vavilov street, 119991, Moscow, Russia ²Avesta-Project Limited Liability Company, Troitsk, Moscow Region, Russia

A.M. Prokhorov General Physics Institute of Russian Academy of Sciences http//:www.gpi.ru

GPI RAS is one of the leading physics institutes in Russia.

About 770 persons work there.

The Nobel Prize in Physics 1964

"for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser-laser principle"

Charles Hard Townes

 $O_1/2$ of the prize USA

Nicolay Gennadiyevich Basov

O1/4 of the prize USSR

Aleksandr Mikhailovich Prokhorov O1/4 of the prize USSR

Massachusetts Institute of Technology (MIT) Cambridge, MA, USA

b. 1915

Institute Moscow, USSR b. 1922

d. 2001

P.N. Lebedev Physical P.N. Lebedev Physical Institute Moscow, USSR

> b. 1916 d. 2002

In Stokholm

Our main task – formation of ultrafast non-linear optical elements based on carbon nanotubes for solid state lasers

Output

We have started from

single-wall carbon nanotubes

many eminence. evier Inc. All rights reserved.

Different media based on single-wall carbon nanotubes1.0-2.2 mkm)http://www.gpi.ru/nanospectroscopy

The SWNT-based media is **not** a limiting factor for the pulse duration

The pulse may be shorten via the resonator optimisation

A.V. Tausenev, E.D. Obraztsova et al., APL 92 (N18) (2008)171113

Since 2004

a mode-locking regime with the saturable absorbers based on CARBON NANOTUBES has been realized in a number of solid state lasers:

Spectral range (µm)

ADVANCED FUNCTIONAL MATERIALS

2009 – the first publications concerning mode locking with a graphene saturable absorber

Q. Bao, H. Zhang et al., Adv. Func. Materials 19 (2009) 3077.

T. Hasan, et al., Adv. Mater. 21 (2009) 3874.

http://nanotechweb.org/cws/article/tech/41949

ULTRAFAST PHOTONICS

Loh and co-workers demonstrate an electrospun graphene-polymer nanocomposite that exhibits wideband shurable absorbance for laser pulse shaping. A freestanding, mechanically robust membrane which is composed of nanofiber network of graphenepolymer nanocomposite is fabricated by electrospinning and applied as a mode locker in fiber lasers. The performance of these graphene-polymer nanocomposites is better than single-wall carbon nanotubes in terms of modulation depth and nonsaturable loss.

WILEY-VCH

A scheme of a home-made installation for CVD graphene synthesis

the number of layers!!!

- **Pyrometer** 1.
- 2. An electric direct current source
- 3. Vacuum pump
- Vacuum-gauge 4.
- 5. CH_4 and H_2

Synthesis of graphene by CVD method

Home-made installation for chemical vapor deposition of graphene onto Ni foil heated by electrical current

The nickel foil between two electrodes The optimal size of the foil is 2x2 cm

M.G. Rybin, A.S. Pozharov and E.D. Obraztsova "Control of number of graphene layers grown by chemical vapor deposition", Phys. Status Solidi C, 7 (2010) 2785-2788

Etching of Ni in FeCl₃ and formation of a freestanding graphene film

Graphene on Ni

Graphene on the surface of FeCl₃ solution

Graphene on glass

1 layer2 layers3 layers20 layersImage: Image: Image:

Raman

Optical absorption

P.A. Obraztsov et al.

"Broadband Light-Induced Absorbance Change in Multilayer Graphene", *NanoLetters 11 (2011)1540.*

Mode locking with graphene

- 1. Er fiber laser (1.55 μ m)
- 2. CO_2 bulk laser (10 μ m)

Reprinting the graphene film on the cross section of optical fiber

1- graphene film on Ni

4 – Film fished out onto a nitrocellylose filter

- 2 Etching in FeCl3
- 5 Pressing the filter to the fiber
- **3-** Separation of film and substrate
- 6 Graphene coverage onto the fiber cross-section

<u>http://lem.onera.fr/download/lectures_graphene/Obraztsov/Obraztsova%20E_reduit.pd</u> Cargese school on graphene (France), 2010.

A scheme of Er fiber laser with a graphene saturable absorber

Generation of 380 fs pulses with the graphene saturable absorber

Output spectrum

Output autocorrelation function

PErL Femtosecond OEM Er Fiber Laser

PErL Femtosecond OEM Er Fiber Laser – the commercial product

as result of the collaboration between the laboratory and the"Avesta" company

Laser specification

Available pulse duration (fixed), fs	250-5000
Wavelength, nm	1560±10
Average output power, mW	>50
Repetition rate, MHz	50
Output type	FC/APC fiber socket
Polarization extinction ratio, dB	not applicable
RF sync out	SMA connector (200-300 mV @ 50 ohm load)
Dimensions, mm	136 x 76 x 24 (27)
Power supply	+5 V

http://www.avesta.ru

A new spectral range

Graphene saturable absorbers for semi-industrial mid-IR CO and CO₂ lasers

With Dr. Yu. Klimachev and Dr. V. Sorochenko

A 20-graphene layer saturable absorber deposited on CaF_2 for mode-locking in <u>CO laser</u> (4.7-7.0 µm)

For $\underline{CO_2}$ laser (10 μ m)

a BaF₂ substrate is used.

https://webistem.com/bin/pdfview?dir=gnt2011&level=2&ref=121 GNT-meeting, Dourdan (France) 2011.

Saturable absorption of a few layer graphene at wavelength 10.55 μm

Conclusion

Graphene has been demonstrated as a prospective material for a new family of ultrafast (sub-picosecond) and efficient saturable absorbers working in a spectral range 1-12 mkm.

The work was supported by Russian research programs RFBR-10-02-00792 and "Nanomaterials and Nanotechnologies".